翻訳と辞書
Words near each other
・ Generation EFX
・ Generalized game theory
・ Generalized gamma distribution
・ Generalized Gauss–Bonnet theorem
・ Generalized Gauss–Newton method
・ Generalized geography
・ Generalized granuloma annulare
・ Generalized Hebbian Algorithm
・ Generalized helicoid
・ Generalized Helmholtz theorem
・ Generalized hypergeometric function
・ Generalized hyperhidrosis
・ Generalized integer gamma distribution
・ Generalized inverse
・ Generalized inverse Gaussian distribution
Generalized inversive congruential pseudorandom numbers
・ Generalized iterative scaling
・ Generalized Jacobian
・ Generalized Kac–Moody algebra
・ Generalized keyboard
・ Generalized Korteweg–de Vries equation
・ Generalized Lagrangian mean
・ Generalized least squares
・ Generalized lentiginosis
・ Generalized lifting
・ Generalized linear array model
・ Generalized linear mixed model
・ Generalized linear model
・ Generalized logistic distribution
・ Generalized Lotka–Volterra equation


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Generalized inversive congruential pseudorandom numbers : ウィキペディア英語版
Generalized inversive congruential pseudorandom numbers
An approach to nonlinear congruential methods of generating uniform pseudorandom numbers in the interval [0,1) is the Inversive congruential generator with prime modulus. A generalization for arbitrary composite moduli m=p_1,\dots p_r with arbitrary distinct primes p_1,\dots ,p_r \ge 5 will be present here.
Let \mathbb_ = \ .For integers a,b \in \mathbb_ with gcd (a,m) = 1 a generalized inversive congruential sequence (y_)_ of elements of \mathbb_ is defined by
: y_ =
: y_\equiv a y_^ + b \pmod m \textn \geqslant 0
where \varphi(m)=(p_-1)\dots (p_-1) denotes the number of positive integers less than ''m'' which are relatively prime to ''m''.
==Example==

Let take m = 15 = 3 \times 5\, a=2 , b=3 and y_0= 1. Hence \varphi (m)= 2 \times 4=8 \, and the sequence (y_)_=(1,5,13,2,4,7,1,\dots ) is not maximum.
The result below shows that these sequences are closely related to the following inversive congruential sequence with prime moduli.
For 1\le i \le r let \mathbb_-1\}, m_= m / p_ and a_ ,b_ \in \mathbb_^ a_\pmod \; b\equiv m_ b_\pmod
Let (y_)_ be a sequence of elements of \mathbb_^\equiv a_ (y_^)^ + b_ \pmod n \geqslant 0 \;\text \;y_\equiv m_ (y_^)\pmod

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Generalized inversive congruential pseudorandom numbers」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.